
www.bsc.es

PoTrA: A framework for Building Power

Models For Next Generation Multicore

Architectures

Part II: modeling methods

Outline

Background

Known pitfalls

Objectives

Part I: Decomposable power models: Single Core

Part II: Decomposable power models: DVFS

Part III: Decomposable power models: CMP

Part IV: Decomposable power models on Virtualized Systems

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
2

Background:
Modeling

ñAll models are wrong but some are usefulò

In general, models can be useful for:

ïPrediction: perform estimations

ïUnderstand better the modeled system

In our field, power models, are also useful for:

ïDetect power phases

ïBreak-down the power consumption of the platform

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
3

Background:
The big picture

Simulation-Based
Models

High-Level Black-
Box Models

Detailed Analytical
Models

Accuracy, Granularity, Decomposable

Speed, Portability and generality

affordability, non-intrusiveness and simplicity
LESS

MORE

MORE

LESS

Å Requirements:
Å Cirtuit/RTL knowledge

Å Issues:
Å Unable for online

predictions

Å Not portable

Å Advantages:

Å Detailed and high

granularity

Å Requirements:
Å Detailed

microachitectural and

layout knowledge

Å Performance Counters

Å Tradeoff between:
Å Simulation and High-

level black box

Å Decomposable but more

complex

Å Requirements:
Å High-Level Generic Events

Å Performance

Counters

Å OS events

Å Issues:
Å Unable to breakdown

Å Less accurate

Å Advantages:
Å Simple and very fast

Offline (DSE) Online (guide power-aware policies)

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
4

Background:
The big picture

Simulation-Based
Models

High-Level Black-
Box Models

Detailed Analytical
Models

Accuracy, Granularity, Decomposable

Speed, Portability and generality

affordability, non-intrusiveness and simplicity
LESS

MORE

MORE

LESS

Å Requirements:
Å Cirtuit/RTL knowledge

Å Issues:
Å Unable for online

predictions

Å Not portable

Å Advantages:

Å Detailed and high

granularity

Å Requirements:
Å Detailed

microachitectural and

layout knowledge

Å Performance Counters

Å Tradeoff between:
Å Simulation and High-

level black box

Å Decomposable but more

complex

Å Requirements:
Å High-Level Generic Events

Å Performance

Counters

Å OS events

Å Issues:
Å Unable to breakdown

Å Less accurate

Å Advantages:
Å Simple and very fast

Offline (DSE) Online (guide power-aware policies)

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
5

Background:
The big picture

Simulation-Based
Models

High-Level Black-
Box Models

Detailed Analytical
Models

Accuracy, Granularity, Decomposable

Speed, Portability and generality

affordability, non-intrusiveness and simplicity
LESS

MORE

MORE

LESS

Å Requirements:
Å Cirtuit/RTL knowledge

Å Issues:
Å Unable for online

predictions

Å Not portable

Å Advantages:

Å Detailed and high

granularity

Å Requirements:
Å Detailed

microachitectural and

layout knowledge

Å Performance Counters

Å Tradeoff between:
Å Simulation and High-

level black box

Å Decomposable but more

complex

Å Requirements:
Å High-Level Generic Events

Å Performance

Counters

Å OS events

Å Issues:
Å Unable to breakdown

Å Less accurate

Å Advantages:
Å Simple and very fast

Offline (DSE) Online (guide power-aware policies)

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
6

Background:
Interesting model properties

Accuracy
ï An inaccurate model is useless

ï Error up to X% are accepted by the
community

Fast evaluation
ï Required for on-line application of the

model

Affordable, easy to deploy
ï Quickly target new systems and speed-up

research

Informative (decomposable)
ï Better understanding of the modeled

system

Responsive
ï Detection of power phases

Robust (generality, workload
independent)
ï Valid for extreme situations or for different

power modes

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
7

Background:
Counter-based power models

Counter-based power model properties (by design):
ï Fast to evaluate Ą Compute a formula

ï Easy to deploy Ą Performance counters are common

Counter-based power models are empirical models
ï i.e. the models are trained using real data

Common methodology:
ï 1.- Design the model:

ÅSelect the counters

ÅDefine the ñformulaò of the model (#inputs)

ï 2.- Gather training data (inputs ăĄ power measurements)

ï 3.- Generate the model
ÅMultiple linear regression

ï 4.- Validate the model
ÅCheck average on the validation data set

Å If average error high Ą fine tune:
ï Redefine the model inputs (apply transformation to model inputs, select other inputs)

ï Piece-wise models (observe data to select splitting point)

ï Manual tuning

The approach used in each step affects the properties of the model
ï Accuracy? Decomposability? Robustness? Responsiveness?

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
8

Background:
Common modeling pitfalls

Pitfall 1: Model the system as a ñblack-boxò

ïLoose of opportunities to gain more insights about the modeled system

ÅWe know how the modeled system work, why do not use that knowledge to

design a more realistic power model?

ïBlack-box models tend to be biased towards training set properties

ïBlack-box models are difficult to understand by experts and layman,

i.e. it is impossible to interpret the model

ÅE.g. counter-intuitive model factors. Common: why floating point activity

has a negative factor? Is floating point generating energy?

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
9

ὓέὨὩὰ ρ υτχȢσ ὃὙ τυφȢω ὃὙ υωψȢς ὃὙ ρχςυὃὙ
 ωψςȢπψὃὙ ςσφχχὃὙ ρυςρτȢυ ὃὙ ωςςχ

ὓέὨὩὰ ς τωȢρ ὃὙ ρςφσ ὃὙ ςχχωὃὙ υρτρὃὙ
 ςρσφὃὙ στσπυὃὙ ςςφψψὃὙ χψφυ

Power model examples. Model 1 and Model 2 exhibit similar average

error. However, Model 1 is more acceptable/interpretable.

Background:
Common modeling pitfalls

Pitfall 2: Only validate model prediction accuracy

ïThe model responsiveness, i.e. its capacity to react in a similar fashion

as power consumption, is key to detect power phases

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
10

Power model examples. Model 1 and Model 2 exhibit similar average

error. However, Model 2 is more responsive

Background:
Common modeling pitfalls

Pitfall 3: Assume workload generality based on K-fold or

LOOCV validation

ïAssume data from normal applications as a valid training/validation

sets

ÅModels biased to the training set properties

ïLack of generality, training/validation sets do not account for all

possible power situations

ÅHigh errors on extreme/not seen situations

Pitfall 4: Rely on human interaction to improve the model

ïExpert knowledge required to fine tune the model base on Trial and

error experimental method

ÅTime-consuming Ą Not affordable, not easy to deploy

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
11

Objectives

Maximize:
ï Accuracy

ï Generality and robustness

ï Informativeness
(decomposability)

ï Responsiveness

While keeping:
ï Affordability (simple and easy to

deploy)

ï Fast evaluation

How?
ï Using a simple systematic

method (affordability), based on
linear regressions (simple), to
generate decomposable
(informativeness) counter-based
(fast-evaluation) power models

ï By design (as well will show), we
ensure the rest of properties:
generality and robustness,
accuracy and responsiveness

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
12

DECOMPOSABLE POWER MODELS:

MODELING SINGLE CORE PLATFORMS

Bottom-up modeling methodology:
Introduction

Hypothesis:

ïPower modeling methods guided using basic knowledge of the modeled
system generate models that are more:

ÅAccurate and responsive

ÅInformative and understandable

ÅRobust and general

Assumptions (knowledge)

ïThe system is composed of independent power components

ÅE.g. functional units, memory hierarchy levels, é

ïThe sum of the dynamic power consumption of each component in
addition to the static power consumption, is the overall power consumption
of the system (Bottom-Up)

ïThe activity on each component is positively and linearly related to its
dynamic power consumption

ÅMore activity Ą more power consumption

ïThe static power consumption (constant) of each component is grouped
into a single component (i.e. the intercept)

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
14

Bottom-up modeling methodology:
Overview

1.- Define the system power components and their associated
counters (model design/definition)
ïMaximize granularity (number of components) to improve

informativeness (decomposability) Ą (avoid pitfall 1)

ïUse performance counters as inputs to ensure the affordability, easy to
deploy and fast on-line evaluation of the generated models

ïDefine a model definition algorithm to systematize the process

2.- Design the training set
ïGather training data

3.- Derive the marginal effect of each power component to the
overall power consumption

ÅUse specifically designed training set (avoid pitfalls 3 and 4)

ÅDefine an algorithm to systematize the process

4.- Validate the model

 SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
15

Bottom-up modeling methodology:
Overview

1.- Define the system power components and their associated
counters (model design/definition)
ïMaximize granularity (number of components) to improve

informativeness (decomposability) Ą (avoid pitfall 1)

ïUse performance counters as inputs to ensure the affordability, easy to
deploy and fast on-line evaluation of the generated models

ïDefine a model definition algorithm to systematize the process

2.- Design the training set
ïGather training data

3.- Derive the marginal effect of each power component to the
overall power consumption

ÅUse specifically designed training set (avoid pitfalls 3 and 4)

ÅDefine an algorithm to systematize the process

4.- Validate the model

 SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
16

Bottom-up modeling methodology:
Power component definition - Overview

What is a power component?

ïA power component represents the power consumption of a part of the

modeled system

ïA power component has an associated activity ratio (AR) formula

based on performance counters

ÅUsually, #events / cycle

Objective: Systematize power component definition process

ïMaximize the number of power components produce more informative

power model

ÅIdeally: 1 architecture component ăĄ 1 power component

ÅReality: N architecture components ăĄ 1 power component

ïWhy? Some properties should be fullfilled

ïDefine the set of rules that define the power components

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
17

Bottom-up modeling methodology:
Power component definition - Rules

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
18

ÅMicroarchitectural components with not direct performance counters
accounting for their activity should be grouped with the most related
microarchitectural components with performance counters available.

Constraint 1: Limit availability of performance counters

ÅPower components which activity can not be decoupled from other
components should be grouped together.

Constraint 2: Impossibility to decouple the activities of different components

ÅPower components defined after the application of Constraint 2 can be split if
the activities of the new power components can be decoupled and the activity
of the power components causing the coupling is accounted in the activity ratio
formula of the each of the new power components

Relaxation 1: Lack of granularity

Å The activity ratio formula of the new power components defined should be

updated to account for the activity (directly or indirectly) of all the

microarchitectural components within the power component.

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
19

Bottom-up modeling methodology:
Power component definition - Algorithm

1) Define a power

component for each

microarchitecture

component

2) Apply Constraint 1:

join component

without counters

3) Apply Constraint 2:

join component that

can not be

decoupled

4) Apply Relaxation 1:

split components

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
20

Bottom-up modeling methodology:
Power component definition ï Intel Core 2

Intel Core 2 processor floorplan

> 30 microarchitecture

components

In-order pipeline:

ïI-Cache, ITLB, IFU, Pre-

Decode, IQ, Microcode ROM,

Decoders, uOP buffer, RAT,

ROB, BPU

Out-of-Order pipeline:

ïALUs, SSEs, FMUL, FDIV,

FADD

Memory hierarchy

ïAGUs, MOB, L1, L1-DTLB,

L2, L2-DTLB, FSB/MEM

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
21

Bottom-up modeling methodology:

Power component definition ï Intel Core 2

Intel Core 2 pipeline

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
22

Bottom-up modeling methodology:
Power component definition ï Intel Core 2

Power components from the in-order pipeline:

ïBPU:

ÅThe Branch prediction unit activity can be decoupled from the rest and

have counters accounting for their activity (# Branches instructions

decoded)

ïAR formula: BR_INST_DECODED/CPU_CLK_UNHALTED

ïFRONTEND (FE):

ÅIncludes the rest of the microarchitecture components because:

ïActivities can not be decoupled

» Activity in Stage N ~ Activity in Stage N+1

ïMost components do not have performance counters accounting directly for

their activity

ÅAR formula: UOPS_RETIRED:ANY/CPU_CLK_UNHALTED

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
23

Bottom-up modeling methodology:
Power component definition ï Intel Core 2

Power components from the out-of-order pipeline:
ï FP:

Å Includes all the floating point units because:
ï There is only a generic counter (FP_COMP_OPS_EXE) accounting for the FP operation executed (there

is not a counter for each unit)

ï Moreover, most the FP instructions can go to different FP units and hence, it is impossible
control/decouple their activities.

Å AR formula: FP_COMP_OPS_EXE/CPU_CLK_UNHALTED

ï SIMD:
Å Includes all the SIMD units because:

ï There is only a generic counter (SIMD_UOPS_EXE) accounting for the SIMD operation executed (there is
not a counter for each unit)

ï Moreover, most the SIMD instructions can go to different SIMD units and hence, it is impossible
control/decouple their activities.

Å AR formula: SIMD_UOPS_EXE/CPU_CLK_UNHALTED

ï INT:
Å Include all the integer units because:

ï Most of the integer instructions can go to different integer units, hence it is impossible to control/decouple
their activities.

Å Integer units do no have counters accounting for their direct activity. However their activity can
be derived from ALL activity minus the FP, SIMD and Branch activity.

Å AR formula: (RS_UOPS_DISPATCHED_CYCLES:PORT_0 +
RS_UOPS_DISPATCHED_CYCLES:PORT_1 + RS_UOPS_DISPATCHED_CYCLES:PORT_5 ï
FP_COMP_OPS_EXE ï SIMD_UOPS_EXEC ï
BR_INST_RETIRED:ANY)/CPU_CLK_UNHALTED

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
24

Bottom-up modeling methodology:
Power component definition ï Intel Core 2

Power components from the cache hierarchy:
ïL1:

ÅIncludes LD/ST execution units, MOB, L1 cache, L1 DTLB, L2 DTLB

ïSome units without counters accounting for their activity

ïit is impossible control/decouple their activities

ÅAR formula: L1D ALL REF/ CPU CLK UNHALTED

ïL2:

ÅIncludes the L2 cache

ïAlthough L2 activity implies L1 activity, the contribution of the L2 can be derived
incrementally after knowing the contribution of the L1 component.

ÅAR formula: L2 RQSTS/ CPU CLK UNHALTED

ïMain memory

ÅIncludes then: FSB (Front Side Bus) and main memory

ïAlthough FSB/main memory activity implies L1 activity, the contribution of the
main memory component can be derived incrementally after knowing the
contribution of the L1/L2 components.

ÅAR formula: BUS DRDY CLOCKS/ CPU CLK UNHALTED

Bottom-up modeling methodology:
Overview

1.- Define the system power components and their associated
counters (model design/definition)
ïMaximize granularity (number of components) to improve

informativeness (decomposability) Ą (avoid pitfall 1)

ïUse performance counters as inputs to ensure the affordability, easy to
deploy and fast on-line evaluation of the generated models

ïDefine a model definition algorithm to systematize the process

2.- Design the training set
ïGather training data

3.- Derive the marginal effect of each power component to the
overall power consumption

ÅUse specifically designed training set (avoid pitfalls 3 and 4)

ÅDefine an algorithm to systematize the process

4.- Validate the model

 SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
25

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
26

Bottom-up modeling methodology:
Design of the training set for training the model

The rule of thumb:

ñthe broader the type of situations used to train the model, the more

general and accurate the model will beò

ïThis implies:

ÅGenerate micro-benchmarks stressing different combinations of the power

components defined

ïStress only one unit or various

ÅCover all the range of possible activities

ïE.g. stress the floating point unit from IPC 0.05 to IPC 4 (if possible)

To ensure the decomposability:

ïGenerate micro-benchmarks decoupling the activity between the

component

ÅMinimize the colinearity between component activities (inputs of the model)

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
27

Bottom-up modeling methodology:
Training set: Intel Core 2

Microbench-

mark set

FE

Activity

INT

Activity

FP

Activity

SIMD

Activity

BPU

Activity

L1

Activity

L2

Activity

FSB

Activity

FE 1 1 0 0 0 0 0 0 0

INT 13 1-3.45 1-3 0 0 0 0 0 0

FP 9 0.2-1.98 0 0.2-1 0 0 0 0 0

SIMD 12 1.85-3.29 0 0 0.99-2.63 0 0 0 0

BPU 5 0.42-1.14 0 0 0 0.46-1 0 0 0

L1 16 1-2.97 0 0 0 0 0.66-2 0 0

L2 12 0.12-0.42 0 0 0 0 0.11-0.22 0.11-0.21 0

MEM 18 0.02-0.14 0 0 0 0 0.02-0.04 0.02-0.04 0.58-0.71

RANDOM 11 1.63-3.95 0-1 0-0.8 0-1.97 0-0.34 0-1.97 0-0.07 0-0.34

TOTAL 97 0.02-3.95 0-3 0-1 0-2.63 0-1 0-2 0-0.21 0-0.71

~100 micro-benchmarks stressing the different power components

defined at different activity ratio

Bottom-up modeling methodology:
Overview

1.- Define the system power components and their associated
counters (model design/definition)
ïMaximize granularity (number of components) to improve

informativeness (decomposability) Ą (avoid pitfall 1)

ïUse performance counters as inputs to ensure the affordability, easy to
deploy and fast on-line evaluation of the generated models

ïDefine a model definition algorithm to systematize the process

2.- Design the training set
ïGather training data

3.- Derive the marginal effect of each power component to the
overall power consumption

ÅUse specifically designed training set (avoid pitfalls 3 and 4)

ÅDefine an algorithm to systematize the process

4.- Validate the model

 SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
28

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
29

Bottom-up modeling methodology:
Modeling the power components

The overall power is the addition of the power consumption of
each power component defined

ὖέύὩὶ ὃὙ ὖ ὖ

Where:
ïὲ is the numbers of components defined

ïὃὙ is the activity ratio of the component Ὥ

ïὖ is the power weight of the component Ὥ
ÅThe power weights should be positive

ïὖ is the static power consumption

Approach: model each Power weight separately
ïuse the specifically designed training set

ïBased on linear regression

Bottom-up modeling methodology:
Modeling the power components

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
30

1st step: model the weights of the
power components
ï Apply incremental linear

regression method (next slide)

ï Check all weights positive

ï Maximize correlation coefficient

2nd step: tune the ὖ
component
ï Use the random micro-benchmark

set

ï Avoid sub-estimating ὖ due to
energy saving techniques
ÅE.g. clock-gating

The method requires specifically
designed training data to find a
solution

The method does not require
human intervention
ï Systematic

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
31

Bottom-up modeling methodology:
Modeling the power components

Apply incremental linear regression method:

ïApply a sequential number of linear regression (one for each

component defined) using the intercept provided

ÅForce intercept to be zero

ÅModel of component i+1 is trained using the residuals of applying the

previous (0..i) models to the micro-benchmark set stress that component

ïReturn the sum of the correlation coefficient of each linear regression

and the weights assigned to each component

Intel Core 2 example:

Bottom-up modeling methodology:
Overview

1.- Define the system power components and their associated
counters (model design/definition)
ïMaximize granularity (number of components) to improve

informativeness (decomposability) Ą (avoid pitfall 1)

ïUse performance counters as inputs to ensure the affordability, easy to
deploy and fast on-line evaluation of the generated models

ïDefine a model definition algorithm to systematize the process

2.- Design the training set
ïGather training data

3.- Derive the marginal effect of each power component to the
overall power consumption

ÅUse specifically designed training set (avoid pitfalls 3 and 4)

ÅDefine an algorithm to systematize the process

4.- Validate the model

 SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
32

SIGMETRICS/Performance 2012 & ICS 2012 Tutorial
33

Bottom-up modeling methodology:
Validation

Metrics to validate:
ïAccuracy :

ÅDifference between power estimations and real measurements

ïPAAE: percentage absolute average error

ïResponsiveness: Capacity to detect phases

ÅApply the same phases detection algorithm to estimations and the real
measurement and compare the results

ï%Accuracy Ą check if the mode is able to detect phases

» ((# of phases correctly predicted)/(total # of phases))*100

ï%False positives Ą check that the model do not over-react

» ((# of non-existent phases predicted)/(total # of phases))*100

ïRobustness (generality, workload independent):

ÅApply the generate model on a wide set of application types to check its
generality

ïCPU workloads: SPEC2006

ïMEM workloads: NAS Parallel Benchmarks

ïOS System : LMBENCH Suite

